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1 Introduction

Thermodynamics was �rst formulated to describe the thermal properties of matter

and, although its scope has now been enlarged, its relationship with the other main

theories of physics, general and special relativity, classical and quantum mechanics

and elementary particle theory, is still rather uneasy. As Sklar remarks [1, p. 4],

it \is surprising that there is any place at all in this picture for a discipline such

as thermodynamics" . It could be argued that it was this perception, leading to

the conclusion that there is indeed no room for thermodynamics, which was the

driving force behind the development of statistical mechanics. Of course, if this

point has any weight, it must be seen in the historic context of the late nineteenth

century, when attitudes to atomic models were rather ambivalent [1, 2]. Writing

in the introduction to his Lectures on Gas Theory about the decline of support for

atomism in continental Europe, Boltzmann [3, p. 24] remarks (presumably, sadly)

that \it has been concluded that the assumption that heat is motion of the smallest

particles of matter will eventually be proved false and discarded". The energeticist

case is presented starkly by Mach:1

The atom must remain a tool for representing phenomena, like func-

tions of mathematics. Gradually, however, as the intellect : : : grows in

discipline, physical science will give up on its mosaic play in stones.

Maxwell in a letter to Stokes in May 1859 (quoted in [4, p. 91]), about his interest

in kinetic theory, emphasizes that he had \taken to the subject for mathematical

work" and that he has engaged in his calculations \as an exercise in mechanics". He

also remarks that it is perhaps \absurd to : : : found arguments upon measurements

of strictly `molecular' quantities before we know whether there be any molecules"

(ibid, p. 93). Notwithstanding these reservations he is prepared, in a paper a few

years later to mount a spirited defense of atomism [6, pp. 23{87].2 It is signi�cance

that Cercignani [7] has chosen to subtitle his biography of Boltzmann The Man

Who Trusted Atoms. In his paper of 1872, deriving the transport equation and

H-theorem, Boltzmann [6, pp. 188{193] certainly writes as if he `believes in' the

molecules of the mechanical theory of heat. However, in his Lectures on Gas Theory

1Taken from Mach's Popular Scienti�c Lectures (1894) and quoted in [2, p. 21] .
2Papers by Maxwell, Clausius, Poincar�e, Zermelo and Boltzmann are contained (in English

translation where necessary) in the two volumes by Brush [5, 6] and will be cited accordingly.
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[3]3 he takes a slightly more cautious stance. The title of the �rst section of the

introduction is `Mechanical analogy for the behaviour of a gas' and in that section [3,

p. 21] he remarks that: \Energetics is certainly very important for science; however,

up to now its concepts are still rather unclear, and its theorems not very precisely

expressed, so that it cannot replace the older theory of heat".

Aside from the question of atomism versus energeticism the very existence of

statisticalmechanics could be viewed as a failure of some putative programme for the

replacement of thermodynamics by a form of many-body mechanics, be it classical

or quantum. An extra ingredient has been used to bridge the gap from purely

mechanical concepts, like position and momentum, to the thermodynamic quantities

of pressure, temperature and entropy.

2 From Kinetic Theory to Statistical Mechanics

The power of an atomistic approach was evident as early as 1738 when Bernoulli, in

his Hydrodynamics, was able to derive Boyle's law by assuming a gas of particles all

with identical velocities. He was also able to obtain the formula relating temperature

to particle velocity. By the time of Clausius and Maxwell it was recognized that

there would be variations in the velocities of gas particles. While Clausius [5, pp.

111{134] replaced the velocities by their average value, Maxwell [5, pp. 148{171]

proposed a formula for velocity variation. Writing to Stokes in 1859 he remarks

that of course his particles \have not all the same velocity, but the velocities are

distributed according to the same formula as the errors are distributed in the theory

of least squares".4 The resulting formula was the, now famous, Maxwell law that,

for a gas of N small, hard, perfectly elastic spheres acting on one another only

during impact, the number of spheres whose speed5 lies between v and v + dv is

f
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It is of some interest that the word `probability' does not occur in this part of the

paper, making its appearance only at the point where Maxwell considers particle

collisions. However, it would be diÆcult to draw a conclusion from this observation

and it can be fairly said [1, p. 30] that we �nd in Maxwell's paper \language of sort

that can be interpreted in a probabilistic or statistical vein".

When considering the origin of the insertion of probabilistic ideas into many-

particle dynamics, we must examine, not only equilibrium distributions, but also

the theory of transport processes, the foundations for which were laid by Maxwell

[6, pp. 23{87] and developed by Boltzmann.6 Boltzmann's analysis starts with

the distribution function f1(v; t) so that f1(v; t)d
3
v is the number of particles

in the volume element d3v at the point v in the single-particle velocity space at

3Published in the same year as Zermelo's criticism [6, pp. 208{217] of his H-theorem results.
4Taken fromThe Scienti�c Letters and Papers of James Clerk Maxwell edited by P. M. Harman

and quoted in [4, p. 95] .
5Maxwell calls v the \actual velocity" of the sphere, but in the context of his derivation it is

clear that the quantity is what we would now call the speed, since he remarks that the \velocities

range from 0 to 1".
6Boltzmann papers on this subject began in 1868, but the most compact presentation of his

work is given in his Lectures on Gas Theory [3].
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time t.7 To calculate how this distribution changes with time we need an ex-

pression for the number of pairs of particles with two di�erent velocities which

collide in unit time.8 Such information will be contained in the two-particle veloc-

ity distribution function f2(v;v
0
; t). The fundamental assumption that Boltzmann

makes here is that there are no correlations between velocities. This means that

f2(v;v
0
; t) = f1(v; t)f1(v

0
; t). This molecular chaos condition is assumed to per-

sist for all time and enabled Boltzmann [6, pp. 188{193] to derive his transport

equation, which has a solution which is independent both of time and the velocity

direction and corresponds to the Maxwell distribution. However, Boltzmann aimed

to prove something stronger, namely to show that the Maxwell distribution is the

unique stationary solution that will be monotonically approached from any non-

equilibrium distribution. He was able to do this [6, pp. 188{193] by proving the

H-theorem, which established that the quantity

H(t) =

Z
d3vf1(v; t) ln[f1(v; t)];

decreases monotonically with time, with the only solution of dH=dt = 0, being the

Maxwell distribution.

It is fairly clear that, up to this point, the subject under discussion is still

`kinetic theory'. Although the language and concepts of Maxwell and Boltzmann

have a certain probabilistic 
avour the distribution functions are still meant to be

a measure of the actual number of particles with velocities in a particular range.

The turning point and the perceptual change seems to have been driven by the

criticisms of Boltzmann's results.

As indicated above, the scienti�c orthodoxy in Germany in the late nineteenth

century was energetics, and this provided a constant challenge to the nascent kinetic

theory. This challenge was compounded by two technical objections.

The �rst of these concerns the problem of reconciling the reversibility of me-

chanical laws and the irreversibility of natural processes as described by the second

law of thermodynamics. This seems to have been �rst noted by Maxwell [4, p. 141],

but it came to Boltzmann's attention in two papers published by Loschmidt [8].

In response to some work of Poisson, Poincar�e [6, pp. 194{202] proved the re-

currence theorem that now bears his name9 and in a second brief paper he drew

attention to what became the second problem in reconciling thermodynamics and

kinetic theory [6, pp. 203{207], namely the incompatibility of the second law of

thermodynamics and the mechanical theory of heat which is based on a usually

recurrent dynamic system. This second paper seems to have been ignored both by

Boltzmann and by Zermelo [6, pp. 208{217] who, in making a similar point elic-

its a reply from Boltzmann [6, pp. 218{228], followed by further dialogue ([6, pp.

229{237] and [6, pp. 238{245]).

7In his �rst presentation of the calculation in 1872 [6, pp. 188{193] the distribution was taken

to be over energies, but this was modi�ed by the time of the 1896 lectures.
8In his original derivation of his transport equation Boltzmann neglected the existence of par-

ticle collisions involving more than two particles.
9For a mechanical system there are an in�nite number of ways of choosing initial conditions

such that the system will return in�nitely many times as close as we like to the initial position.

There are also an in�nite number of initial choices which do not have this property, but the latter

are `exceptional' in comparison with the former.
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Boltzmann makes a number of points related both to the recurrence problem

and to the question of irreversibility:

(i) If the number of molecules is in�nite then the Poincar�e theorem does

not apply and, even for a `small' system,10 the recurrence time would

be a number in seconds with \many trillions of digits".

(ii) In practice we would not expect a �nite system to be completely isolated

so again the Poincar�e theorem does not apply.

(iii) The second law is, from the molecular viewpoint, a statistical law.

(iv) In order to understand irreversibility it is necessary to be able to distin-

guish clearly between the macroscopic and microscopic levels and to have

a de�nition, for the dynamic system, of what is meant by a macrostate.

The importance of these replies can be seen in the fact that they have each, in

di�erent ways, led to the development of programmes for non-equilibrium statistical

mechanics. With the possible exception of (iii), they are also still subjects of dispute.

The question of whether statistical mechanics applies only to systems of a large,

possibly in�nite, number of microsystems will be discussed below. The view that

external in
uences are needed to achieve statistical mechanical equilibrium11 takes

two forms. The disturbance could be of the form of small random perturbations

which, as envisaged by Boltzmann, will alter the trajectory of the system and pre-

vent recurrence and reversibility. Or it could be a steady dissipation of energy.

The remark by Sklar [1, p. 156] that \within the context of the dynamical theory

of non-equilibrium : : : the equilibrium state exists as the `attractor' to which the

dynamics of non-equilibrium drives [it]", would imply something of this sort, since

isolated mechanical systems do not have attractors [9].

In his reply to Loschmidt, Boltzmann [6, pp. 188{193] argues for a statistical

view of the second law. Writing in the following year a similar point is made by

Maxwell. In his review of Tait's Thermodynamics he notes that the \truth of the

second law", as a statistical theorem, was \of the nature of a strong probability

: : : not an absolute certainty" like dynamic laws, (quoted in [4, p. 141]). The

most immediate e�ect of this can be seen in a change of perception of the mean-

ing of f1(v; t). This function is no longer regarded as the actual distribution of

the N particles of the gas. In modern terms it has become equal to N�1(v; t),

where �1(v; t) is the single-particle probability density function over velocity space.

From this point it is a relatively small step to change the quantity of interest to

�N(x;p; t), the probability density function on the phase space � of the vector

(x;p), specifying the coordinates and momenta of all the degrees of freedom of

the N particles. If the system is Hamiltonian and if probabilities are preserved by

the Hamiltonian 
ow then the probability density function must satisfy Liouville's

equation. This equation provides the starting point for a number of di�erent ap-

proaches to non-equilibrium statistical mechanics, most notably the derivation of the

Bogolyubov-Born-Green-Kirkwood-Yvonhierarchy of kinetic equations and the work

of the Brussels-Austin School, which will be discussed in Sec. 6. However, for the

moment we are interested in possible interpretations of the probability density func-

tion �N(x;p; t) and we must �rst consider the options available to us.
10Which he takes to be 1 c.c. of air containing 1018 molecules [6, pp. 218{228].
11Called by Sklar [1, p. 250] the interventionist approach.
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3 Di�erent Views of Probability

There seem to be three attitudes to the presence of statistics in statistical mechanics.

The �rst, which tends to be that adopted by classical texts in the subject and

to go with great reliance on the concept of ensembles, is to regard the subject

algorithmically, as a procedure for arriving at answers, rather in the same way as

the replica method is used in some calculations in critical phenomena and neural

networks. Thus Tolman [10, pp. 1,2] writes:

[The] principles of statistical mechanics are to be regarded as permitting

us to make reasonable predictions as to the future of a system. : : : [They

consist] in abandoning the attempt to follow the precise changes in state

which take place in a particular system, and in studying the behaviour

of a collection or ensemble of systems.12

The second approach, is to regard probabilistic ideas rather in the way that the

energeticists regarded the atom (see the quote fromMach given above), as something

that a more mature science would be able to discard. The means for doing this is

usually thought to be ergodic theory, which will be considered in detail below.

The third approach is to take a more positive attitude to the probabilistic ideas,

interpreting them, by implication if not explicitly, according to one of the standard

view of probability. In this context, therefore, we shall now review the di�erent

views of probability. There are many ways to subdivide these views [1, 12, 13]. The

main division is between the scienti�c (or objective) view and the subjective view.

We shall make a further subdivision of each of these categories.

3.1 The Scienti�c View

This may be characterized by the fact that it considers \the theory of probability as

a science of the same order as geometry or theoretical mechanics", [14, p. vii]. Thus

probability is an objective property. But of what? Clearly not simply of an object,

like a die, without any other quali�cation. It seems most reasonable to de�ne the

probability as that of the outcome of a particular experiment with the object in

question, in circumstances where some aspect of the test is incompletely speci�ed.

Typically this incomplete speci�cation arises because the outcome is sensitive to

initial conditions, so that it is, both in practice and in principle, impossible to �x

all the aspects of the experiment necessary to determine the outcome. In the case of

the throw of a die,13 we are unable to determine which side �nally lands uppermost,

because we are unable to to specify exactly the initial location and orientation, and

angular and linear acceleration.14 As we have seen in relation to the comments on

Tolman, given above, there is a tendency to talk of `incomplete knowledge' rather

12In the same passages he also refers to `incomplete' and `partial' knowledge. The has led Hobson

[11], an adherent of a subjectivist view of probability in statistical mechanics, to claim him as a

supporter. We do not �nd this claim entirely convincing [12]. The passage could quite easily be

read as a statement of the (presumably) uncontentious view that probability concepts are used

when a system is incompletely speci�ed.
13And excluding the possibility of careful dropping it with one face uppermost onto a yielding

surface.
14Neither are we able to control the outside e�ects such as air resistance and wind. However,

this is a separate issue leading us to the question of the role of the isolation or non-isolation of the

system.
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than `incomplete speci�cation'. However, for an objectivist such terminology would

be regarded as misleading.

We now have the problem of de�ning probability and there are two ways in

which this is done in the objective context.

The Relative Frequency Interpretation. In this tradition the probabilistic

properties of a system are de�ned by considering the results of a large number of

macroscopically identical experiments on the system. For von Mises [14, p. 29] this

large number of operations or events is the collective; the probability of a particular

outcome is then de�ned as the limit of the relative frequency of this outcome in

the collective, as the size of the collective increases to in�nity. Probability then

is, in some sense, not a property of a single experiment, but of the collective of

experiments.

The Propensity Interpretation. For Popper [15, 16] (see also [13]) probability

is a latent propensity of an individual system experimented on in a speci�ed way. In

keeping with his general views on the philosophy of science, the probability of the

outcome of an experiment is something about which one forms a hypothesis, which

is then tested by repeated experiments.

3.2 The Subjective View

According to this view the probability that someone assigns to an event is a measure

of her/his degree of belief in the outcome. For some people the adoption of the

viewpoint is a liberating experience. As E. T. Jaynes writes [17, p. 268]:

As soon as we recognize that probabilities do not describe reality { only

our information about reality { the gates are wide open to the optimal

solution of problems of reasoning from that information.

Again we shall make two subdivisions of this viewpoint.

Degrees of Belief Interpretation. This view, which is usually associated with

names of Ramsey and de Finetti, allows one to hold any coherent set of beliefs

about the probabilities of the outcomes of events. Coherence is described using the

Dutch book arguments which concern willingness to bet. The constraints provided

by these arguments prevents one holding beliefs which would mean that one in-

evitably looses money and leads to probabilities which satisfy the usual rules of the

probability calculus. I agree with Hobson [11, p. 33] that this type of subjectivism

has no relevance for the physical sciences and it will not feature any further in our

discussion.

Rational Belief Interpretation. This point of view, which is sometimes called

`objective Baysianism' has already been introduced by a quote from Jaynes. Prob-

ability is still a question of belief, but it is constrained to be rational belief, not

only in the Dutch book sense, but by having taken into account in a systematic

way, all the evidence available. The principle exponent of this point of view is E.
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T. Jaynes.15 His method, now usually called the maximum entropy method, will be

discussed in relation to statistical mechanics below. It has, however, been applied

by him in other situations as well. In it simplest form, when no information on

which to base our probabilities is available, the rational choice is in accord with the

Keynesian principle of indi�erence [19]. However, the application of this principle

is not straightforward. Although it leads to the choice of a uniform distribution,

the variable with respect to which the distribution is uniform is not always obvious.

Jaynes resolution of this problem is to argue that, if probability is to be assigned

according to our state of knowledge of the system, then it must be assigned in the

same way to equivalent problems. The probability assignment must be invariant

under all transformations between equivalent problems. He illustrates his method

by proposing a solution to the Bertrand chord problem, [18, p. 131], showing that

his solution is supported by a relative frequency test?

4 Ergodic Theory

Consider again a Hamiltonian system with con�guration vector x and momentum

vector p. Then the time evolution of the system is given by vector (x(t);p(t)) in

�, moving according to the Hamiltonian 
ow. Given a measure density function

�(x;p; t), the Hamiltonian 
ow is measure-preserving if �(x;p; t) satis�es Liouville's

equation. This will be the case for the uniform volume measure. So if 
 is a subset of

�, which is invariant under the Hamiltonian 
ow and of �nite volume M(
) we can

de�ne the time-independent normalized measure function �(x;p) = 1=M(
), for

(x;p) 2 
, and zero for (x;p) =2 
. This mechanical system is related to a thermo-

dynamic system through correspondences between thermodynamic quantities fQTg
and mechanical phase functions fQ(x;p)g.

The starting point for ergodic theory is to argue that QT is equal to the averagee
Q(x0;p0; �) of Q over a period of time � , computed along the path of the system

from (x0;p0). It is assumed that � is long with respect to the microscopic correla-

tion time, the relaxation time of macroscopic variables and the time taken to destroy

purely local constants of motion. From this it is argued that the result of a measure-

ment is e�ectively the in�nite time average obtained in the limit � !1.16 For this

to be useful it is necessary to establish that this limit exists and that it is indepen-

dent of (x0;p0). It was shown by Birkho� [20] that lim
�!1

e
Q(x0;p0; �) = b

Q(x0;p0)

exists almost everywhere in 
; that is except possibly for a set of �-measure zero.

From this it follows (see e.g. [12]) that bQ is a constant of motion almost everywhere

in 
. Now let Q be the average of Q over 
 with respect to �. It also follows from

Birkho�'s theorem that Q = b
Q = b

Q and it is clear that, if bQ is a constant almost

everywhere in 
, bQ = b
Q and bQ = Q holds almost everywhere in 
. If this is the case

then bQ is a constant almost everywhere in 
. If bQ = Q holds almost everywhere in


, for all phase functions integrable over 
, then the system is said to be ergodic.

Thus for ergodic system we can (almost) legitimately identify QT with Q.

15For his collected papers until the date of its publication see [18]. For convenience all references

to Jaynes' work will be made to this collection rather than to the original source of the paper.
16The obvious problem with this is that, if it were true, we should never be able to make

measurements on non-equilibrium systems [1, p. 176].
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It would be tempting to suppose that ergodicity has established the connection

between thermodynamic quantities, de�ned as time averages, and phase averages,

without the need to interpret the measure density function �. We do, however, have

the problem of the set of �-measure zero. To know that this set can be neglected we

must know that a measurement is never (or hardly ever) made starting at one of its

points. This brings us back to assuming some sort of probabalistic interpretation

for �. We have not escaped the statistics in statistical mechanics.

Given that ergodic theory is not an escape from probability, it is still worth

considering how, at least for objectivists, it can be used as a justi�cation of the

probability measure chosen. The original ergodic hypothesis17 assumed that the

path of the system passed through every point of 
. It is clear both that this

would be suÆcient to establish ergodicity and also that it cannot be true [12]. The

alternative quasi-ergodic hypothesis that the path passes arbitrarily close to every

point of 
 has not proved suÆcient to establish ergodicity, although it is necessary.

There is, however, a condition, both necessary and suÆcient, which is intuitively

somewhat similar to the quasi-ergodic hypothesis. To prove the necessity of the lat-

ter we would assume that, given a particular path of the system, there exists a

point in 
 which has a neighbourhood not containing any points of the path. This

is clearly impossible for an ergodic system since we could alter the phase average,

without changing the time average, by changing the value of the phase function

in the neighbourhood. The even stronger assumption that 
 can be decomposed

into two subsets of non-zero measure, invariant under the 
ow, is clearly inconsis-

tent with ergodicity. Metric transitivity, which is de�ned as the negation of this

assumption, is thus necessary for ergodicity and it is not diÆcult to see that it is

also suÆcient.

5 Equilibrium Statistical Mechanics

This works very well; supporting, among other things, the enormous development,

since the early 1970's, in the theory of phase transitions. One reason for this success

is that, in spite of unresolved problems about the foundations, the superstructure is

based on a few agreed propositions. Firstly on the fact that equilibrium corresponds

to having a probability density function � which is not an explicit function of time

and secondly on the form for � which should be used in given sets of physical

circumstances.

The way that, such sets of circumstances are determined and interpreted by the

subjectivists will be discussed below. We should, however, note that if the energy,

given by the value of the Hamiltonian, is the only isolating constant of motion,18

then there is general agreement that the appropriate probability density function is

the one obtained by applying equal probabilities to the points of an accessible region

of phase space. This leads to the microcanonical distribution and the simplest way

to derive it [21] is to take the invariant set 
, de�ned in Sec. 4, to be the shell

E < H(x;p) < E + 4E. The distribution over the energy surface �E is then

induced in the limit 4E ! 0. From this the canonical distribution can be derived

17Usually attributed to Boltzmann, but see the translator's introduction to [3].
18An integral of the equations of motion does not necessarily de�ne a surface in �. Only those

which do can be used to reduce the dimension of a set invariant under the 
ow. Such an integral

is called an isolating constant of motion.
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using either the central limit theorem [21] or the method of steepest descents [22].

Both these procedures are asymptotically valid for systems with a large number of

microsystems. Subjectivists do not need this limit, although \many quantities of

interest are highly predictable when N is large" [11, p. 70].

So, although it is viewed in di�erent ways according to one's view of probability,

the starting problem for equilibrium statistical mechanics amounts to having a

means of justifying the use of the uniform distribution over an energy shell. We see

that ergodic theory will `almost' give us such a justi�cation if the Hamiltonian is the

only isolating constant of motion, since then we might expect the energy surface

to be metrically transitive. However, the problem of proving the non-existence

of additional isolating constants of motion is, in general, very diÆcult and when

they exist the form of thermodynamics di�ers signi�cantly from the standard form

[23, 24]. To whom is this important? Not, I think, to those like Tolman [10], who

regard the object of statistical mechanics not as a single system, but an ensemble

of systems. Choosing to model the ensemble by the microcanonical distribution is

simply to include in the ensemble systems with all values of the other unknown

isolating constants of motion.

As we saw above, Boltzmann aimed to justify the Maxell distribution by showing

that it arose as the stationary solution to his transport equation which is attained

in the limit t ! 1. There are two substantial programmes which follow a similar

route in aiming to show that equilibrium arises in the long-time limit from non-

equilibrium situations. These are that of the Brussels-Austin School [25, 26], and

that using the maximum entropy method [11, 17, 18].19 The work of the Brussels-

Austin School is most appropriately considered in the context of non-equilibrium

theory in Sec. 6. However, the maximum entropy method has a form speci�cally

for equilibrium and this we shall now discuss.

Jaynes [18, p. 416] prefers to refer to his method as \predictive statistical me-

chanics" and he goes on to say that:

[It] is not a physical theory, but a form of statistical inference....instead

of seeking the unattainable [it] asks a more modest question: \Given the

partial information that we do in fact have, what are the best predictions

we can make of observable phenomena?"

So the fact that there are unknown constants of motions is irrelevant, since our only

task is to make predictions based on what we know.20

We now compare the maximum entropy formulation with a standard, objectivist,

formulation for a simple problem. We consider a system with discrete energy levels

fE1; E2; : : : ; Eng. Then questions are posed in the following ways:

(i) In the maximum entropy formulation: What is the best probability dis-

tribution for the random variable E, the energy of the system, based on

the information available to us?

(ii) In an objectivist formulation: Given the physical environment of the sys-

tem (whether it is isolated, or in contact, in some way with its exterior),

what is the probability distribution for E?

19These two approaches are discussed and compared by Dougherty [27, 28].
20As we see below, he argues in a similar way in relation to unknown degrees of freedom, when

he discusses the non-objective nature of entropy.
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For Jaynes the key to the problem is the idea of uncertainty. Given an appropriate

measure of uncertainty, if we choose the probability distribution which maximizes

the uncertainty relative to the available information then this will be the best prob-

ability distribution because it assumes as little as possible. He shows [18, p. 16] that

the unique measure of uncertainty, which satis�es some reasonable mathematical

properties, is Shannon's information entropy

SI(pi) = �
nX
i=1

pi ln (pi) ;

[30]. The information entropy SI is then related to the thermodynamic entropy ST
by ST = kBfSIgMax. Consider the following two cases:

We know nothing about the state of the system, other than the number

of energy levels.

(a) Since the system has no dynamics there is no way of `deriving' the

probability distribution. However, an objectivist will believe that there

is a probability associated with an experiment to determine its state.

In both versions of objectivism repeated experiments will be made. In

the case of a relative-frequentist this will serve to de�ne the probability;

someone who holds a propensity view will have formed a hypothesis, the

most reasonable being that pi = 1=n, and the sequence of experiments

will be used to see if the hypothesis is falsi�ed.

(b) Using the maximum entropy method we maximize SI(pi) subject only

to the condition p1 + p2 � � � + pn = 1 to give the same result as that

hypothesized by the objectivists.

This is the uniform distribution.21

For the canonical distribution the objective and subjective statements of

the problem di�er.

(a) The objective statement here has a thermodynamic content. The system

is taken to be in a heat-bath at temperature T , which is the conjugate

variable to the energy E. Then the most elegant way to derive the

required results in this case is, as for the Hamiltonian system described

above, to use the central limit theorem [29].

(b) For the maximum entropy method the equivalent situation is to know the

expectation value hEi of the energy. Then SI(pi) is maximized subject

to the normalization condition and p1E1 + p2E2 + � � �+ pnEn = hEi to
give

pi =
exp(�Ei�)

Z(�)
where Z(�) =

nX
i=1

exp(�Ei�); hEi = �
d ln(Z)

d�
:

There are a number of problems with Jaynes' method which can be discussed in

reference to this example. Two of these are:
21It is similar to the microcanonical distribution, which is the uniform distribution over the

degenerate states corresponding to an energy level in which the system is known to be.
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A conceptual problem concerns the status of entropy. It can be expressed in

the following way:

� The object of interest for statistical mechanics is a system O = fOM;OTg,
where OM denotes the qualities at the micro (atomic) level and OT denotes

the qualities at the macro (thermodynamic) level.

� About such a system we have a certain amount of information I = fIM; ITg.

� For such a system we devise a model M = fMM;MTg.

What is it that has entropy? There would probably be agreement that the entropy

S(OM) is not well-de�ned, but does the entropy S(O) exist? Entropy is de�ned

in terms of a probability distribution so if you believe that the distribution is an

objective property of the system (including its environment) there is no problem in

saying that S(O) exists. Jaynes would deny this. For him the entropy is S(I). He
argues that you can never know what degrees of freedom a system has. You may, for

example, have neglected internal degrees of freedom within your molecules which

would make a contribution to the entropy. So entropy is not an `objective' property

of the system. It is `subjective' in the sense that it is a function of the knowledge

which you, the subject, have. The counter argument would go something like this.

Yes, but what you are calculating is S(M) the entropy of your model, which as long

as you have carried out an exact calculation is the entropy of the model, however

good or bad it is, for the system you are considering. The Sackur-Tetrode equation

gives the correct entropy of a perfect gas in spite of the fact that perfect gases do

not exist. The relation between S(M) and S(O) is the same as between any two

other theoretical and physical quantities and doesn't lead to the rejection of the

existence of S(O).

A mathematical problem associated with Jaynes' method was �rst raised by

Friedman and Shimony [31]. Consider the system, described above, with energy

spectrum fE1; : : : ; Eng and suppose and that we are �rst given the background

datum D0, that contains no information apart from its structure (the number of

states). Then, as we saw above, from the maximum entropy principle, the appropri-

ate distribution is the uniform distribution Prob[Ej jD0] = 1=n. Suppose now the

energy E is measured and let the datum be hEi = U , where U is given. Referring

to this new piece of datum as D1 and using the maximum entropy principle we

now have the canonical distribution Prob[Ej jD0 andD1] = exp(�Ej�)=Z(�). Now

according to the usual formula for conditional probabilities (Bayes' Theorem)

Prob[Ej jD0] =
X
D1

Prob[Ej jD0 andD1]Prob[D1jD0]

and since D1 varies over all values of � it can be supposed to have a probability

density function p(�), giving

1

n

=

Z
d�p(�)

exp(�Ej�)

Z(�)
; 1 � j � n:

But for j = 1 and all p(�), except p(�) = Æ
D(�)Z

d�p(�)
exp(�E1�)

Z(�)
>

Z
d�p(�)

exp(�E1�)

n exp(�E1�)
=

1

n

:
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This problem has generated a lot of discussion (see [32]). The response by Jaynes

[18, p. 250] was that \if D1 is a statement about a probability distribution on

the sample space � = fE1; : : : ; Eng, then it can be used as a constraint when

maximizing entropy but not as conditioning statement in Bayes' theorem, since it

is not a statement about an event in �. On the other hand, if D1 is a statement

de�ning an event in the sample space �m of m trials, then the converse is the case".

6 Non-Equilibrium Statistical Mechanics

In the �nal chapter of his seminal work on the philosophical foundations of statistical

mechanics Sklar [1] begins a summing up of the current state of the area by stating

that, in his opinion, \most important questions still remain unanswered in very

fundamental and important ways". Although, as we have seen, this is to some

extent true for equilibrium it is more evidently the case for non-equilibrium.

It seems to be the case that the attempt to remove the statistics from statistical

mechanics (via ergodic theory and associated dynamic analysis) is now at a dead-

end. So when we are considering the way a system behaves over time the \evolution

we describe : : : will be that of a probability distribution over microstates of systems

compatible with the macroconstraints de�ning the systems of interest" [1, p. 261].

There, therefore, remains the question of the interpretation of probability. Or, at

least, whether you want to embrace a subjective view of probability. Because, as

we shall see, if you do that you will be able to develop a type of solution to the

problem of entropy increase and the evolution to equilibrium which would not make

sense to an objectivist. On the other hand most of the approaches to this problem

proposed by objectivists could be regarded as `interpretation-free'.22

One group who would probably disagree with Sklar as to the unresolved nature

of the problem of irreversiblity are those like Lebowitz [33] and Bricmont [34], who

believe that the problem was solved in a satisfactory way by Boltzmann, and that

current problems are caused by the fact that he has been misunderstood. The `suc-

cessful' explanation is based on the implementation of the procedure23 for de�ning

macrostates by dividing the phase space into small cells. This course graining ap-

proach works very well, in the sense that it gives a clear (possible) physical insight

into the mechanism at work in irreversiblity. The usual objection is to the rather ar-

bitrary nature of the course graining procedure. This is acknowledged by Lebowitz

who says that while \this speci�cation of the macroscopic state clearly contains

some arbitrariness, this need not concern us too much, since all the statements

we are going to make about the evolution of [the macrostate] are independent of

the precise de�nition as long as there is a large separation between the macro and

microscales" [33, pp. 33{34].

Lebowitz's article elicited a number of letters in Physics Today, two of which

are of particular interest since they represent the main competing schools in non-

equilibrium theory. The �rst, from Barnum et al. [36] criticizes Boltzmann's ideas

from the perspective of \Shannon's statistical information and Edwin Jaynes' prin-

ciple of maximum entropy". The criticism here, as I understand it, is not so much

22This is a view I expressed [12] with regard to the work of Progogine. It was subsequently

endorsed by Dougherty [27].
23More fully developed by Paul and Tatiana Ehrenfest [35].
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of course-graining per se as of the underlying philosophy. In fact Jaynes is on the

whole favourable to Boltzmann's approach, giving an account of it, together with

the comment that, in \Boltzmann's method of most probable distribution, we have

already the essential mathematical content of the principle of maximum entropy"

[18, p. 227]. However, this kind of approach is not the way Jaynes seems to prefer

to describe increase of entropy. The following is the account given in [18, p. 27].

6.1 A Subjectivist Approach to Non-Equilibrium

Entropy is a measure of uncertainty or lack of information. As time passes our infor-

mation about the system becomes out of date. There is a loss of information, which

is an increase in uncertainty (entropy). This perception is realized in the follow-

ing way. Suppose we have a set f
1(t); : : : ;
m(t)g of time-dependent observables

related respectively to the phase functions f!1(x;p; t); : : : ; !m(x;p; t)g by


j(t) = h!j(x;p; t)i =
Z
�

�(x;p; t)!j(x;p; t)d�:

Measurements are made of these observables at the time t0 with the results

f
1(t0); : : : ;
m(t0)g. The probability density function �(x;p; t0) = �0(x;p; t0)

is the one which maximizes

S(�(t0)) = �kB
Z
�

�(x;p; t0) lnf�(x;p; t0)gd�;

subject to the constraints


j(t0) =

Z
�

�(x;p; t0)!j(x;p; t0)d�:

The probability density function evolves according to Liouville's equation and at a

later time t is given by �0(x;p; t). According to our state of knowledge our best

predictions for the observables at time t are now given by


j(t) =

Z
�

�0(x;p; t)!j(x;p; t)d�:

Using these predicted values as new constraints we derive a new probability density

function �(x;p; t) which maximizes S(�(t)). It is clear that S(�(t0)) = S(�0(t0)) =

S(�0(t)) � S(�(t)). This approach, even more clearly that does the equilibrium

treatment, highlights the fact that entropy is to be regarded, not as an objective

property of the system but as dependent upon our knowledge of the system. It is

also somewhat more limited that the usual statement of the second law. This can be

seen if we consider a number of instances of time later that t0. Suppose t0 < t < t
0.

Then using the analysis given above S(�(t0)) � S(�(t)) and S(�(t0)) � S(�(t0)),

but we know nothing about the relative sizes of S(�(t)) and S(�(t0)). Entropy has

not been shown to be monotonically increasing. This aspect of Jaynes' programme

was discussed in detail by Lavis and Milligan [32].
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6.2 An Objectivist Approach to Non-Equilibrium

The second letter responding to Lebowitz's article in Physics Today is from Driebe

[37], a member of Progogine's Brussels-Austin group. His criticism of the Boltz-

mann/Lebowitz approach is more radical than that of Barnum et al. [36]. He makes

two points of particular interest for the present discussion: (i) \Irreversibility is not

to be found on the level of trajectories or wave-functions, but is instead manifest

on the level of probability distributions". (ii) \Many degrees of freedom is not a

necessary condition for irreversible behaviour. It is the chaotic dynamics, associated

with positive Lyapunov exponents or Poincar�e resonances, that causes the system

to behave irreversibly". At �rst sight (i) appears to be simply a restatement of the

quote from Sklar, given above, about the need to use, as our element of interest, the

probability density function rather than the trajectory. However, I think something

more fundamental is implied. Before discussing this question we give a very brief

summary of the methods of Prigogine and co-workers.24

The subject of interest is the evolution of a set of observable macroscopic quan-

tities, which are taken to be the expectation values hQi(t)i of phase functions

Qi(x;p; t), i = 1; 2; : : :. Now phase functions corresponding to observables are

functions of only a small number of variables,25 so the probability density function

contains a great deal of unwanted detail. The method is to show that, relative to

any particular Qi, the probability density function � can be split into two parts

� = �1+�2, with hQi(t)i = hQi(t)i1+ hQi(t)i2, so that, the unwanted detail is in �2
with hQi(t)i2 vanishing identically and hQi(t)i1 reproducing the unique equilibrium
value, corresponding to the thermodynamic quantity, in the limit t ! 1. This

procedure can be seen as a \series of successive contractions of the description of a

many-body system" [26, p. 689]. For it to work it is necessary that the system has

a large number of degrees of freedom and that it satis�es some level of mixing. The

latter would certainly be the case if it were a C-system, that is to say chaotic (pos-

sesses a positive Lyapunov exponent for almost all initial conditions), [9, p. 262].

This is the point made by Driebe [37].26 Returning to his comment concerning

trajectories and probabilities density functions; it is illuminating to see them in the

context of remarks by Prigogine to the e�ect that we must \eliminate the notion of

trajectory from our microscopic description. This actually corresponds to a realistic

description: no measurement, no computation leads strictly to a point, to the con-

sideration of a unique trajectory. We shall always face a set of trajectories", [38, p.

60].27 I think what is being referred to here is the `sensitivity to initial conditions'

which is present in chaotic systems. This means that, even in principle, we cannot

specify the initial conditions with suÆcient accuracy to know that the evolution

corresponds to the 
ow along a particular single trajectory. However, it seems to

me, that there is a conceptual di�erence between that and the \elimination of the

notion of a trajectory".

24For detailed accounts see Prigogine [25] or Balescu [26].
25This is the intuition underlying the use of the Boltzmann transport equation and the early

terms in the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy.
26His reference to the irrelevance of \many degrees of freedom" is not, I think, a contradiction

of Balescu [26, p. 689]. It is certainly the case that some systems with a few degrees of freedom

behave irreversibly, but this doesn't mean that they are models for thermodynamic behaviour.
27The English translation of this passage is taken from [34].

14



7 Conclusions

We have seen that programmes for the foundation of statistical mechanics can be

based both of subjective and objective views of probability.

The subjective programme, based on the maximum entropy principle of Jaynes,

is coherent and mathematically complete. It does, however, have some drawbacks,

to which we have referred. (i) Because of it reliance on data collecting it does not

seem to be able to take into account non-quantitative information. (ii) Because the

probability density function is a property both of the system and our knowledge

of the system, thermodynamic quantities, most particularly the entropy, are also

properties both of the system and our knowledge of the system. This second point

is closely related to the lack of a clear distinction between systems and models of

systems.

Objective programmes are much more technically diÆcult. Equilibrium calcula-

tions either rely on some kind of justi�cation for the microcanonical distribution or

are the consequence of showing that equilibrium is achieved as the long-time limit

from non-equilibrium. The most developed programme for the latter is the work of

the Brussels-Austin School which needs the system to be chaotic.
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