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1 Introduction

Thermodynamics was first formulated to describe the thermal properties of matter
and, although its scope has now been enlarged, its relationship with the other main
theories of physics, general and special relativity, classical and quantum mechanics
and elementary particle theory, is still rather uneasy. As Sklar remarks [1, p. 4],
it “is surprising that there is any place at all in this picture for a discipline such
as thermodynamics” . It could be argued that it was this perception, leading to
the conclusion that there is indeed no room for thermodynamics, which was the
driving force behind the development of statistical mechanics. Of course, if this
point has any weight, it must be seen in the historic context of the late nineteenth
century, when attitudes to atomic models were rather ambivalent [1, 2]. Writing
in the introduction to his Lectures on Gas Theory about the decline of support for
atomism in continental Europe, Boltzmann [3, p. 24] remarks (presumably, sadly)
that “it has been concluded that the assumption that heat is motion of the smallest
particles of matter will eventually be proved false and discarded”. The energeticist
case is presented starkly by Mach:!

The atom must remain a tool for representing phenomena, like func-
tions of mathematics. Gradually, however, as the intellect ... grows in
discipline, physical science will give up on its mosaic play in stones.

Maxwell in a letter to Stokes in May 1859 (quoted in [4, p. 91]), about his interest
in kinetic theory, emphasizes that he had “taken to the subject for mathematical
work” and that he has engaged in his calculations “as an exercise in mechanics”. He
also remarks that it is perhaps “absurd to ... found arguments upon measurements
of strictly ‘molecular’ quantities before we know whether there be any molecules”
(ibid, p. 93). Notwithstanding these reservations he is prepared, in a paper a few
years later to mount a spirited defense of atomism [6, pp. 23-87].% It is significance
that Cercignani [7] has chosen to subtitle his biography of Boltzmann The Man
Who Trusted Atoms. In his paper of 1872, deriving the transport equation and
H-theorem, Boltzmann [6, pp. 188-193] certainly writes as if he ‘believes in’ the
molecules of the mechanical theory of heat. However, in his Lectures on Gas Theory

!Taken from Mach’s Popular Scientific Lectures (1894) and quoted in [2, p. 21] .
2Papers by Maxwell, Clausius, Poincaré, Zermelo and Boltzmann are contained (in English
translation where necessary) in the two volumes by Brush [5, 6] and will be cited accordingly.



[3]® he takes a slightly more cautious stance. The title of the first section of the
introduction is ‘Mechanical analogy for the behaviour of a gas’ and in that section [3,
p. 21] he remarks that: “Energetics is certainly very important for science; however,
up to now its concepts are still rather unclear, and its theorems not very precisely
expressed, so that it cannot replace the older theory of heat”.

Aside from the question of atomism versus energeticism the very existence of
statistical mechanics could be viewed as a failure of some putative programme for the
replacement of thermodynamics by a form of many-body mechanics, be it classical
or quantum. An extra ingredient has been used to bridge the gap from purely
mechanical concepts, like position and momentum, to the thermodynamic quantities
of pressure, temperature and entropy.

2 From Kinetic Theory to Statistical Mechanics

The power of an atomistic approach was evident as early as 1738 when Bernoulli, in
his Hydrodynamics, was able to derive Boyle’s law by assuming a gas of particles all
with identical velocities. He was also able to obtain the formula relating temperature
to particle velocity. By the time of Clausius and Maxwell it was recognized that
there would be variations in the velocities of gas particles. While Clausius [5, pp.
111-134] replaced the velocities by their average value, Maxwell [5, pp. 148-171]
proposed a formula for velocity variation. Writing to Stokes in 1859 he remarks
that of course his particles “have not all the same velocity, but the velocities are
distributed according to the same formula as the errors are distributed in the theory
of least squares”.* The resulting formula was the, now famous, Mazwell law that,
for a gas of N small, hard, perfectly elastic spheres acting on one another only
during impact, the number of spheres whose speed® lies between v and v + dv is

fl(M)(v)dv, where
oy AN 0
fi (U)—a v exp( a2>'

It is of some interest that the word ‘probability’ does not occur in this part of the
paper, making its appearance only at the point where Maxwell considers particle
collisions. However, it would be difficult to draw a conclusion from this observation
and it can be fairly said [1, p. 30] that we find in Maxwell’s paper “language of sort
that can be interpreted in a probabilistic or statistical vein”.

When considering the origin of the insertion of probabilistic ideas into many-
particle dynamics, we must examine, not only equilibrium distributions, but also
the theory of transport processes, the foundations for which were laid by Maxwell
[6, pp. 23-87] and developed by Boltzmann.® Boltzmann’s analysis starts with
the distribution function f;(v,t) so that fi(v,t)d3v is the number of particles
in the volume element d®v at the point v in the single-particle velocity space at

3Published in the same year as Zermelo’s criticism [6, pp. 208-217] of his H-theorem results.

4Taken from The Scientific Letters and Papers of James Clerk Mazwell edited by P. M. Harman
and quoted in [4, p. 95] .

5Maxwell calls v the “actual velocity” of the sphere, but in the context of his derivation it is
clear that the quantity is what we would now call the speed, since he remarks that the “velocities
range from 0 to co”.

6Boltzmann papers on this subject began in 1868, but the most compact presentation of his
work is given in his Lectures on Gas Theory [3].



time ¢.” To calculate how this distribution changes with time we need an ex-
pression for the number of pairs of particles with two different velocities which
collide in unit time.® Such information will be contained in the two-particle veloc-
ity distribution function fo(v,v’,t). The fundamental assumption that Boltzmann
makes here is that there are no correlations between velocities. This means that
fa(v,v' 1) = fi(v,t)fi(v',t). This molecular chaos condition is assumed to per-
sist for all time and enabled Boltzmann [6, pp. 188-193] to derive his transport
equation, which has a solution which is independent both of time and the velocity
direction and corresponds to the Maxwell distribution. However, Boltzmann aimed
to prove something stronger, namely to show that the Maxwell distribution is the
unique stationary solution that will be monotonically approached from any non-
equilibrium distribution. He was able to do this [6, pp. 188-193] by proving the
H-theorem, which established that the quantity

H(t) = /d3vf1(v,t) In[f1(v,t)],

decreases monotonically with time, with the only solution of dH/dt¢ = 0, being the
Maxwell distribution.

It is fairly clear that, up to this point, the subject under discussion is still
‘kinetic theory’. Although the language and concepts of Maxwell and Boltzmann
have a certain probabilistic flavour the distribution functions are still meant to be
a measure of the actual number of particles with velocities in a particular range.
The turning point and the perceptual change seems to have been driven by the
criticisms of Boltzmann’s results.

As indicated above, the scientific orthodoxy in Germany in the late nineteenth
century was energetics, and this provided a constant challenge to the nascent kinetic
theory. This challenge was compounded by two technical objections.

The first of these concerns the problem of reconciling the reversibility of me-
chanical laws and the irreversibility of natural processes as described by the second
law of thermodynamics. This seems to have been first noted by Maxwell [4, p. 141],
but it came to Boltzmann’s attention in two papers published by Loschmidt [8].

In response to some work of Poisson, Poincaré [6, pp. 194-202] proved the re-
currence theorem that now bears his name® and in a second brief paper he drew
attention to what became the second problem in reconciling thermodynamics and
kinetic theory [6, pp. 203—207], namely the incompatibility of the second law of
thermodynamics and the mechanical theory of heat which is based on a usually
recurrent dynamic system. This second paper seems to have been ignored both by
Boltzmann and by Zermelo [6, pp. 208-217] who, in making a similar point elic-
its a reply from Boltzmann [6, pp. 218-228], followed by further dialogue ([6, pp.
229-237] and [6, pp. 238-245]).

In his first presentation of the calculation in 1872 [6, pp. 188-193] the distribution was taken
to be over energies, but this was modified by the time of the 1896 lectures.

8In his original derivation of his transport equation Boltzmann neglected the existence of par-
ticle collisions involving more than two particles.

9For a mechanical system there are an infinite number of ways of choosing initial conditions
such that the system will return infinitely many times as close as we like to the initial position.
There are also an infinite number of initial choices which do not have this property, but the latter
are ‘exceptional’ in comparison with the former.




Boltzmann makes a number of points related both to the recurrence problem
and to the question of irreversibility:

(i) If the number of molecules is infinite then the Poincaré theorem does
not apply and, even for a ‘small’ system,'? the recurrence time would
be a number in seconds with “many trillions of digits”.

(ii) In practice we would not expect a finite system to be completely isolated
so again the Poincaré theorem does not apply.

(iii) The second law is, from the molecular viewpoint, a statistical law.

(iv) In order to understand irreversibility it is necessary to be able to distin-
guish clearly between the macroscopic and microscopic levels and to have
a definition, for the dynamic system, of what is meant by a macrostate.

The importance of these replies can be seen in the fact that they have each, in
different ways, led to the development of programmes for non-equilibrium statistical
mechanics. With the possible exception of (iii), they are also still subjects of dispute.

The question of whether statistical mechanics applies only to systems of a large,
possibly infinite, number of microsystems will be discussed below. The view that
external influences are needed to achieve statistical mechanical equilibrium!! takes
two forms. The disturbance could be of the form of small random perturbations
which, as envisaged by Boltzmann, will alter the trajectory of the system and pre-
vent recurrence and reversibility. Or it could be a steady dissipation of energy.
The remark by Sklar [1, p. 156] that “within the context of the dynamical theory
of non-equilibrium ... the equilibrium state exists as the ‘attractor’ to which the
dynamics of non-equilibrium drives [it]”, would imply something of this sort, since
isolated mechanical systems do not have attractors [9].

In his reply to Loschmidt, Boltzmann [6, pp. 188-193] argues for a statistical
view of the second law. Writing in the following year a similar point is made by
Maxwell. In his review of Tait’s Thermodynamics he notes that the “truth of the
second law”, as a statistical theorem, was “of the nature of a strong probability

. not an absolute certainty” like dynamic laws, (quoted in [4, p. 141]). The
most immediate effect of this can be seen in a change of perception of the mean-
ing of fi(v,t). This function is no longer regarded as the actual distribution of
the N particles of the gas. In modern terms it has become equal to Np;(v,t),
where p1 (v, 1) is the single-particle probability density function over velocity space.
From this point it is a relatively small step to change the quantity of interest to
p~(X,p,t), the probability density function on the phase space I' of the vector
(x,p), specifying the coordinates and momenta of all the degrees of freedom of
the NV particles. If the system is Hamiltonian and if probabilities are preserved by
the Hamiltonian flow then the probability density function must satisfy Liouville’s
equation. This equation provides the starting point for a number of different ap-
proaches to non-equilibrium statistical mechanics, most notably the derivation of the
Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy of kinetic equations and the work
of the Brussels-Austin School, which will be discussed in Sec. 6. However, for the
moment we are interested in possible interpretations of the probability density func-
tion py(xX,Pp,t) and we must first consider the options available to us.

LOWhich he takes to be 1 c.c. of air containing 108 molecules [6, pp. 218-228].
! Called by Sklar [1, p. 250] the interventionist approach.



3 Different Views of Probability

There seem to be three attitudes to the presence of statistics in statistical mechanics.
The first, which tends to be that adopted by classical texts in the subject and
to go with great reliance on the concept of ensembles, is to regard the subject
algorithmically, as a procedure for arriving at answers, rather in the same way as
the replica method is used in some calculations in critical phenomena and neural
networks. Thus Tolman [10, pp. 1,2] writes:

[The] principles of statistical mechanics are to be regarded as permitting
us to make reasonable predictions as to the future of a system. ... [They
consist] in abandoning the attempt to follow the precise changes in state
which take place in a particular system, and in studying the behaviour
of a collection or ensemble of systems.'?

The second approach, is to regard probabilistic ideas rather in the way that the
energeticists regarded the atom (see the quote from Mach given above), as something
that a more mature science would be able to discard. The means for doing this is
usually thought to be ergodic theory, which will be considered in detail below.

The third approach is to take a more positive attitude to the probabilistic ideas,
interpreting them, by implication if not explicitly, according to one of the standard
view of probability. In this context, therefore, we shall now review the different
views of probability. There are many ways to subdivide these views [1, 12, 13]. The
main division is between the scientific (or objective) view and the subjective view.
We shall make a further subdivision of each of these categories.

3.1 The Scientific View

This may be characterized by the fact that it considers “the theory of probability as
a science of the same order as geometry or theoretical mechanics”, [14, p. vii]. Thus
probability is an objective property. But of what? Clearly not simply of an object,
like a die, without any other qualification. It seems most reasonable to define the
probability as that of the outcome of a particular experiment with the object in
question, in circumstances where some aspect of the test is incompletely specified.
Typically this incomplete specification arises because the outcome is sensitive to
initial conditions, so that it is, both in practice and in principle, impossible to fix
all the aspects of the experiment necessary to determine the outcome. In the case of
the throw of a die,'® we are unable to determine which side finally lands uppermost,
because we are unable to to specify exactly the initial location and orientation, and
angular and linear acceleration.'* As we have seen in relation to the comments on
Tolman, given above, there is a tendency to talk of ‘incomplete knowledge’ rather

1211 the same passages he also refers to ‘incomplete’ and ‘partial’ knowledge. The has led Hobson
[11], an adherent of a subjectivist view of probability in statistical mechanics, to claim him as a
supporter. We do not find this claim entirely convincing [12]. The passage could quite easily be
read as a statement of the (presumably) uncontentious view that probability concepts are used
when a system is incompletely specified.

13 And excluding the possibility of careful dropping it with one face uppermost onto a yielding
surface.

14 Neither are we able to control the outside effects such as air resistance and wind. However,
this is a separate issue leading us to the question of the role of the isolation or non-isolation of the
system.



than ‘incomplete specification’. However, for an objectivist such terminology would
be regarded as misleading.

We now have the problem of defining probability and there are two ways in
which this is done in the objective context.

The Relative Frequency Interpretation. In this tradition the probabilistic
properties of a system are defined by considering the results of a large number of
macroscopically identical experiments on the system. For von Mises [14, p. 29] this
large number of operations or events is the collective; the probability of a particular
outcome is then defined as the limit of the relative frequency of this outcome in
the collective, as the size of the collective increases to infinity. Probability then
is, in some sense, not a property of a single experiment, but of the collective of
experiments.

The Propensity Interpretation. For Popper [15, 16] (see also [13]) probability
is a latent propensity of an individual system experimented on in a specified way. In
keeping with his general views on the philosophy of science, the probability of the
outcome of an experiment is something about which one forms a hypothesis, which
is then tested by repeated experiments.

3.2 The Subjective View

According to this view the probability that someone assigns to an event is a measure
of her/his degree of belief in the outcome. For some people the adoption of the
viewpoint is a liberating experience. As E. T. Jaynes writes [17, p. 268]:

As soon as we recognize that probabilities do not describe reality — only
our information about reality — the gates are wide open to the optimal
solution of problems of reasoning from that information.

Again we shall make two subdivisions of this viewpoint.

Degrees of Belief Interpretation. This view, which is usually associated with
names of Ramsey and de Finetti, allows one to hold any coherent set of beliefs
about the probabilities of the outcomes of events. Coherence is described using the
Dutch book arguments which concern willingness to bet. The constraints provided
by these arguments prevents one holding beliefs which would mean that one in-
evitably looses money and leads to probabilities which satisfy the usual rules of the
probability calculus. I agree with Hobson [11, p. 33] that this type of subjectivism
has no relevance for the physical sciences and it will not feature any further in our
discussion.

Rational Belief Interpretation. This point of view, which is sometimes called
‘objective Baysianism’ has already been introduced by a quote from Jaynes. Prob-
ability is still a question of belief, but it is constrained to be rational belief, not
only in the Dutch book sense, but by having taken into account in a systematic
way, all the evidence available. The principle exponent of this point of view is E.



T. Jaynes.'® His method, now usually called the mazimum entropy method, will be
discussed in relation to statistical mechanics below. It has, however, been applied
by him in other situations as well. In it simplest form, when no information on
which to base our probabilities is available, the rational choice is in accord with the
Keynesian principle of indifference [19]. However, the application of this principle
is not straightforward. Although it leads to the choice of a uniform distribution,
the variable with respect to which the distribution is uniform is not always obvious.
Jaynes resolution of this problem is to argue that, if probability is to be assigned
according to our state of knowledge of the system, then it must be assigned in the
same way to equivalent problems. The probability assignment must be invariant
under all transformations between equivalent problems. He illustrates his method
by proposing a solution to the Bertrand chord problem, [18, p. 131], showing that
his solution is supported by a relative frequency test?

4 FErgodic Theory

Consider again a Hamiltonian system with configuration vector x and momentum
vector p. Then the time evolution of the system is given by vector (x(t), p(t)) in
I', moving according to the Hamiltonian flow. Given a measure density function
w(x, p,t), the Hamiltonian flow is measure-preserving if u(x, p, t) satisfies Liouville’s
equation. This will be the case for the uniform volume measure. So if +y is a subset of
I, which is invariant under the Hamiltonian flow and of finite volume M (v) we can
define the time-independent normalized measure function p(x,p) = 1/M(y), for
(x,p) € 7, and zero for (x,p) ¢ 7. This mechanical system is related to a thermo-
dynamic system through correspondences between thermodynamic quantities {Qr}
and mechanical phase functions {Q(x,p)}.

_ The starting point for ergodic theory is to argue that @t is equal to the average
Q(x0,Po,7) of Q over a period of time 7, computed along the path of the system
from (xg, po)- It is assumed that 7 is long with respect to the microscopic correla-
tion time, the relaxation time of macroscopic variables and the time taken to destroy
purely local constants of motion. From this it is argued that the result of a measure-
ment is effectively the infinite time average obtained in the limit 7 — 00.'® For this
to be useful it is necessary to establish that this limit exists and that it is indepen-
dent of (xg,po). It was shown by Birkhoff [20] that TILHOIOQ(Xo,po,T) = Q(x0,Po)

exists almost everywhere in ~; that is except possibly for a set of p-measure zero.
From this it follows (see e.g. [12]) that @ is a constant of motion almost everywhere
in . Now let @ be the average of () over v with respect to p. It also follows from

Birkhoff’s theorem that Q= @ @ and it is clear that, if @ is a constant almost
everywhere in 7, Q Q and Q @ holds almost everywhere in 7. If this is the case
then Q is a constant almost everywhere in 7. If Q Q holds almost everywhere in

7, for all phase functions integrable over v, then the system is said to be ergodic.
Thus for ergodic system we can (almost) legitimately identify QT with Q.

I5For his collected papers until the date of its publication see [18]. For convenience all references
to Jaynes’ work will be made to this collection rather than to the original source of the paper.

16The obvious problem with this is that, if it were true, we should never be able to make
measurements on non-equilibrium systems [1, p. 176].



It would be tempting to suppose that ergodicity has established the connection
between thermodynamic quantities, defined as time averages, and phase averages,
without the need to interpret the measure density function u. We do, however, have
the problem of the set of py-measure zero. To know that this set can be neglected we
must know that a measurement is never (or hardly ever) made starting at one of its
points. This brings us back to assuming some sort of probabalistic interpretation
for u. We have not escaped the statistics in statistical mechanics.

Given that ergodic theory is not an escape from probability, it is still worth
considering how, at least for objectivists, it can be used as a justification of the
probability measure chosen. The original ergodic hypothesis'” assumed that the
path of the system passed through every point of . It is clear both that this
would be sufficient to establish ergodicity and also that it cannot be true [12]. The
alternative quasi-ergodic hypothesis that the path passes arbitrarily close to every
point of v has not proved sufficient to establish ergodicity, although it is necessary.

There is, however, a condition, both necessary and sufficient, which is intuitively
somewhat similar to the quasi-ergodic hypothesis. To prove the necessity of the lat-
ter we would assume that, given a particular path of the system, there exists a
point in v which has a neighbourhood not containing any points of the path. This
is clearly impossible for an ergodic system since we could alter the phase average,
without changing the time average, by changing the value of the phase function
in the neighbourhood. The even stronger assumption that v can be decomposed
into two subsets of non-zero measure, invariant under the flow, is clearly inconsis-
tent with ergodicity. Metric transitivity, which is defined as the negation of this
assumption, is thus necessary for ergodicity and it is not difficult to see that it is
also sufficient.

5 Equilibrium Statistical Mechanics

This works very well; supporting, among other things, the enormous development,
since the early 1970’s, in the theory of phase transitions. One reason for this success
is that, in spite of unresolved problems about the foundations, the superstructure is
based on a few agreed propositions. Firstly on the fact that equilibrium corresponds
to having a probability density function p which is not an explicit function of time
and secondly on the form for p which should be used in given sets of physical
circumstances.

The way that, such sets of circumstances are determined and interpreted by the
subjectivists will be discussed below. We should, however, note that if the energy,
given by the value of the Hamiltonian, is the only isolating constant of motion,'®
then there is general agreement that the appropriate probability density function is
the one obtained by applying equal probabilities to the points of an accessible region
of phase space. This leads to the microcanonical distribution and the simplest way
to derive it [21] is to take the invariant set -, defined in Sec. 4, to be the shell
E < H(x,p) < E+ AE. The distribution over the energy surface ¥, is then
induced in the limit AE — 0. From this the canonical distribution can be derived

17Usually attributed to Boltzmann, but see the translator’s introduction to [3].

18 An integral of the equations of motion does not necessarily define a surface in I". Only those
which do can be used to reduce the dimension of a set invariant under the flow. Such an integral
is called an isolating constant of motion.



using either the central limit theorem [21] or the method of steepest descents [22].
Both these procedures are asymptotically valid for systems with a large number of
microsystems. Subjectivists do not need this limit, although “many quantities of
interest are highly predictable when N is large” [11, p. 70].

So, although it is viewed in different ways according to one’s view of probability,
the starting problem for equilibrium statistical mechanics amounts to having a
means of justifying the use of the uniform distribution over an energy shell. We see
that ergodic theory will ‘almost’ give us such a justification if the Hamiltonian is the
only isolating constant of motion, since then we might expect the energy surface
to be metrically transitive. However, the problem of proving the non-existence
of additional isolating constants of motion is, in general, very difficult and when
they exist the form of thermodynamics differs significantly from the standard form
[23, 24]. To whom is this important? Not, I think, to those like Tolman [10], who
regard the object of statistical mechanics not as a single system, but an ensemble
of systems. Choosing to model the ensemble by the microcanonical distribution is
simply to include in the ensemble systems with all values of the other unknown
isolating constants of motion.

As we saw above, Boltzmann aimed to justify the Maxell distribution by showing
that it arose as the stationary solution to his transport equation which is attained
in the limit ¢ — oco. There are two substantial programmes which follow a similar
route in aiming to show that equilibrium arises in the long-time limit from non-
equilibrium situations. These are that of the Brussels-Austin School [25, 26], and
that using the maximum entropy method [11, 17, 18].1% The work of the Brussels-
Austin School is most appropriately considered in the context of non-equilibrium
theory in Sec. 6. However, the maximum entropy method has a form specifically
for equilibrium and this we shall now discuss.

Jaynes [18, p. 416] prefers to refer to his method as “predictive statistical me-
chanics” and he goes on to say that:

[It] is not a physical theory, but a form of statistical inference....instead
of seeking the unattainable [it] asks a more modest question: “Given the
partial information that we do in fact have, what are the best predictions
we can make of observable phenomena?”

So the fact that there are unknown constants of motions is irrelevant, since our only
task is to make predictions based on what we know.2°

We now compare the maximum entropy formulation with a standard, objectivist,
formulation for a simple problem. We consider a system with discrete energy levels
{E\, Es,...,E,}. Then questions are posed in the following ways:

(i) In the mazimum entropy formulation: What is the best probability dis-
tribution for the random variable E, the energy of the system, based on
the information available to us?

(ii) In an objectivist formulation: Given the physical environment of the sys-
tem (whether it is isolated, or in contact, in some way with its exterior),
what is the probability distribution for E?7

9These two approaches are discussed and compared by Dougherty [27, 28].
20 As we see below, he argues in a similar way in relation to unknown degrees of freedom, when
he discusses the non-objective nature of entropy.



For Jaynes the key to the problem is the idea of uncertainty. Given an appropriate
measure of uncertainty, if we choose the probability distribution which maximizes
the uncertainty relative to the available information then this will be the best prob-
ability distribution because it assumes as little as possible. He shows [18, p. 16] that
the unique measure of uncertainty, which satisfies some reasonable mathematical
properties, is Shannon’s information entropy

Si(pi) = — Zpi In (p;),

[30]. The information entropy Si is then related to the thermodynamic entropy St
by St = kg{SI }amax- Consider the following two cases:

We know nothing about the state of the system, other than the number
of energy levels.

(a) Since the system has no dynamics there is no way of ‘deriving’ the
probability distribution. However, an objectivist will believe that there
is a probability associated with an experiment to determine its state.
In both versions of objectivism repeated experiments will be made. In
the case of a relative-frequentist this will serve to define the probability;
someone who holds a propensity view will have formed a hypothesis, the
most reasonable being that p; = 1/n, and the sequence of experiments
will be used to see if the hypothesis is falsified.

(b) Using the mazimum entropy method we maximize Si(p;) subject only
to the condition p; + p2--+ + p, = 1 to give the same result as that
hypothesized by the objectivists.

This is the uniform distribution.2!

For the canonical distribution the objective and subjective statements of
the problem differ.

(a) The objective statement here has a thermodynamic content. The system
is taken to be in a heat-bath at temperature 7', which is the conjugate
variable to the energy E. Then the most elegant way to derive the
required results in this case is, as for the Hamiltonian system described
above, to use the central limit theorem [29].

(b) For the maximum entropy method the equivalent situation is to know the
expectation value (E) of the energy. Then Si(p;) is maximized subject
to the normalization condition and p1 By + poFa + -+ - + pp B = (E) to
give

exp(—E;\)

B dIn(Z)
PTTI B

where Z()\):Zexp(—EiA), (B) = -—o

There are a number of problems with Jaynes’ method which can be discussed in
reference to this example. Two of these are:

211t is similar to the microcanonical distribution, which is the uniform distribution over the
degenerate states corresponding to an energy level in which the system is known to be.

10



A conceptual problem concerns the status of entropy. It can be expressed in
the following way:

e The object of interest for statistical mechanics is a system O = {Om, Or},
where On denotes the qualities at the micro (atomic) level and Ot denotes
the qualities at the macro (thermodynamic) level.

e About such a system we have a certain amount of information Z = {Zn, Z7}.

e For such a system we devise a model M = { M, Mr}.

What is it that has entropy? There would probably be agreement that the entropy
S(Owm) is not well-defined, but does the entropy S(O) exist? Entropy is defined
in terms of a probability distribution so if you believe that the distribution is an
objective property of the system (including its environment) there is no problem in
saying that S(QO) exists. Jaynes would deny this. For him the entropy is S(Z). He
argues that you can never know what degrees of freedom a system has. You may, for
example, have neglected internal degrees of freedom within your molecules which
would make a contribution to the entropy. So entropy is not an ‘objective’ property
of the system. It is ‘subjective’ in the sense that it is a function of the knowledge
which you, the subject, have. The counter argument would go something like this.
Yes, but what you are calculating is S(M) the entropy of your model, which as long
as you have carried out an exact calculation is the entropy of the model, however
good or bad it is, for the system you are considering. The Sackur-Tetrode equation
gives the correct entropy of a perfect gas in spite of the fact that perfect gases do
not exist. The relation between S(M) and S(O) is the same as between any two
other theoretical and physical quantities and doesn’t lead to the rejection of the
existence of S(O).

A mathematical problem associated with Jaynes’ method was first raised by
Friedman and Shimony [31]. Consider the system, described above, with energy
spectrum {Ei,...,E,} and suppose and that we are first given the background
datum Dy, that contains no information apart from its structure (the number of
states). Then, as we saw above, from the maximum entropy principle, the appropri-
ate distribution is the uniform distribution Prob[E;|Dy] = 1/n. Suppose now the
energy F is measured and let the datum be (E) = U, where U is given. Referring
to this new piece of datum as D; and using the maximum entropy principle we
now have the canonical distribution Prob[E;|Dy and D1] = exp(—E;3)/Z(3). Now
according to the usual formula for conditional probabilities (Bayes’ Theorem)

Prob[E;|Do] = ) _ Prob[E;|Dy and Dy |Prob[D; | D]
Dy

and since D; varies over all values of 3 it can be supposed to have a probability
density function p(f), giving

I exp(—E;f) .
= [ g
But for 7 = 1 and all p(3), except p(B) = 6°(3)

/ dBp(B) %

> / 45p(5) negf;(—EElfﬁ') ) = "
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This problem has generated a lot of discussion (see [32]). The response by Jaynes
[18, p. 250] was that “if Dy is a statement about a probability distribution on
the sample space ¥ = {Ei,...,E,}, then it can be used as a constraint when
maximizing entropy but not as conditioning statement in Bayes’ theorem, since it
is not a statement about an event in ¥. On the other hand, if D; is a statement
defining an event in the sample space X" of m trials, then the converse is the case”.

6 Non-Equilibrium Statistical Mechanics

In the final chapter of his seminal work on the philosophical foundations of statistical
mechanics Sklar [1] begins a summing up of the current state of the area by stating
that, in his opinion, “most important questions still remain unanswered in very
fundamental and important ways”. Although, as we have seen, this is to some
extent true for equilibrium it is more evidently the case for non-equilibrium.

It seems to be the case that the attempt to remove the statistics from statistical
mechanics (via ergodic theory and associated dynamic analysis) is now at a dead-
end. So when we are considering the way a system behaves over time the “evolution
we describe . .. will be that of a probability distribution over microstates of systems
compatible with the macroconstraints defining the systems of interest” [1, p. 261].
There, therefore, remains the question of the interpretation of probability. Or, at
least, whether you want to embrace a subjective view of probability. Because, as
we shall see, if you do that you will be able to develop a type of solution to the
problem of entropy increase and the evolution to equilibrium which would not make
sense to an objectivist. On the other hand most of the approaches to this problem
proposed by objectivists could be regarded as ‘interpretation-free’.??

One group who would probably disagree with Sklar as to the unresolved nature
of the problem of irreversiblity are those like Lebowitz [33] and Bricmont [34], who
believe that the problem was solved in a satisfactory way by Boltzmann, and that
current, problems are caused by the fact that he has been misunderstood. The ‘suc-
cessful’ explanation is based on the implementation of the procedure?? for defining
macrostates by dividing the phase space into small cells. This course graining ap-
proach works very well, in the sense that it gives a clear (possible) physical insight
into the mechanism at work in irreversiblity. The usual objection is to the rather ar-
bitrary nature of the course graining procedure. This is acknowledged by Lebowitz
who says that while “this specification of the macroscopic state clearly contains
some arbitrariness, this need not concern us too much, since all the statements
we are going to make about the evolution of [the macrostate] are independent of
the precise definition as long as there is a large separation between the macro and
microscales” [33, pp. 33-34].

Lebowitz’s article elicited a number of letters in Physics Today, two of which
are of particular interest since they represent the main competing schools in non-
equilibrium theory. The first, from Barnum et al. [36] criticizes Boltzmann’s ideas
from the perspective of “Shannon’s statistical information and Edwin Jaynes’ prin-
ciple of maximum entropy”. The criticism here, as I understand it, is not so much

22This is a view I expressed [12] with regard to the work of Progogine. It was subsequently
endorsed by Dougherty [27].
23More fully developed by Paul and Tatiana Ehrenfest [35].
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of course-graining per se as of the underlying philosophy. In fact Jaynes is on the
whole favourable to Boltzmann’s approach, giving an account of it, together with
the comment that, in “Boltzmann’s method of most probable distribution, we have
already the essential mathematical content of the principle of maximum entropy”
[18, p. 227]. However, this kind of approach is not the way Jaynes seems to prefer
to describe increase of entropy. The following is the account given in [18, p. 27].

6.1 A Subjectivist Approach to Non-Equilibrium

Entropy is a measure of uncertainty or lack of information. As time passes our infor-
mation about the system becomes out of date. There is a loss of information, which
is an increase in uncertainty (entropy). This perception is realized in the follow-
ing way. Suppose we have a set {Q(%),...,Qm(t)} of time-dependent observables
related respectively to the phase functions {w; (x,p;t),...,wm(x,p;t)} by

muﬁww@mw»=AMxmwwwyth

Measurements are made of these observables at the time ?; with the results
{Q(to), ..., 2m(to)}. The probability density function p(x,p;to) = po(X,P;to)
is the one which maximizes

ﬂanz—@ﬁ}@mwwmmwyn@mn

subject to the constraints

fMMZAM&EM%WEMﬂ-

The probability density function evolves according to Liouville’s equation and at a
later time ¢ is given by po(x,p;t). According to our state of knowledge our best
predictions for the observables at time ¢ are now given by

() = [ po(x,pst)e (x.pst)r.

Using these predicted values as new constraints we derive a new probability density
function p(x,p;t) which maximizes S(p(t)). It is clear that S(p(to)) = S(po(to)) =
S(po(t)) < S(p(t)). This approach, even more clearly that does the equilibrium
treatment, highlights the fact that entropy is to be regarded, not as an objective
property of the system but as dependent upon our knowledge of the system. It is
also somewhat more limited that the usual statement of the second law. This can be
seen if we consider a number of instances of time later that to. Suppose to < t < t'.
Then using the analysis given above S(p(to)) < S(p(t)) and S(p(to)) < S(p(t')),
but we know nothing about the relative sizes of S(p(t)) and S(p(¢')). Entropy has
not been shown to be monotonically increasing. This aspect of Jaynes’ programme
was discussed in detail by Lavis and Milligan [32].
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6.2 An Objectivist Approach to Non-Equilibrium

The second letter responding to Lebowitz’s article in Physics Today is from Driebe
[37], a member of Progogine’s Brussels-Austin group. His criticism of the Boltz-
mann/Lebowitz approach is more radical than that of Barnum et al. [36]. He makes
two points of particular interest for the present discussion: (i) “Irreversibility is not
to be found on the level of trajectories or wave-functions, but is instead manifest
on the level of probability distributions”. (ii) “Many degrees of freedom is not a
necessary condition for irreversible behaviour. It is the chaotic dynamics, associated
with positive Lyapunov exponents or Poincaré resonances, that causes the system
to behave irreversibly”. At first sight (i) appears to be simply a restatement of the
quote from Sklar, given above, about the need to use, as our element of interest, the
probability density function rather than the trajectory. However, I think something
more fundamental is implied. Before discussing this question we give a very brief
summary of the methods of Prigogine and co-workers.?*

The subject of interest is the evolution of a set of observable macroscopic quan-
tities, which are taken to be the expectation values (Q;(t)) of phase functions
Qi(x,p,t), i = 1,2,.... Now phase functions corresponding to observables are
functions of only a small number of variables,?® so the probability density function
contains a great deal of unwanted detail. The method is to show that, relative to
any particular @;, the probability density function p can be split into two parts
p = p1+ pe2, with (Q;(t)) = (Q:(t))1 +{(Q:i(t))2, so that, the unwanted detail is in py
with (Q;(t))> vanishing identically and (Q;(t))1 reproducing the unique equilibrium
value, corresponding to the thermodynamic quantity, in the limit ¢ — oo. This
procedure can be seen as a “series of successive contractions of the description of a
many-body system” [26, p. 689]. For it to work it is necessary that the system has
a large number of degrees of freedom and that it satisfies some level of mixing. The
latter would certainly be the case if it were a C-system, that is to say chaotic (pos-
sesses a positive Lyapunov exponent for almost all initial conditions), [9, p. 262].
This is the point made by Driebe [37].26 Returning to his comment concerning
trajectories and probabilities density functions; it is illuminating to see them in the
context, of remarks by Prigogine to the effect that we must “eliminate the notion of
trajectory from our microscopic description. This actually corresponds to a realistic
description: no measurement, no computation leads strictly to a point, to the con-
sideration of a unique trajectory. We shall always face a set of trajectories”, [38, p.
60].2" I think what is being referred to here is the ‘sensitivity to initial conditions’
which is present in chaotic systems. This means that, even in principle, we cannot
specify the initial conditions with sufficient accuracy to know that the evolution
corresponds to the flow along a particular single trajectory. However, it seems to
me, that there is a conceptual difference between that and the “elimination of the
notion of a trajectory”.

24For detailed accounts see Prigogine [25] or Balescu [26].

25This is the intuition underlying the use of the Boltzmann transport equation and the early
terms in the Bogolyubov-Born-Green-Kirkwood-Yvon hierarchy.

26His reference to the irrelevance of “many degrees of freedom” is not, I think, a contradiction
of Balescu [26, p. 689]. It is certainly the case that some systems with a few degrees of freedom
behave irreversibly, but this doesn’t mean that they are models for thermodynamic behaviour.

2TThe English translation of this passage is taken from [34].
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7 Conclusions

We have seen that programmes for the foundation of statistical mechanics can be
based both of subjective and objective views of probability.

The subjective programme, based on the maximum entropy principle of Jaynes,
is coherent and mathematically complete. It does, however, have some drawbacks,
to which we have referred. (i) Because of it reliance on data collecting it does not
seem to be able to take into account non-quantitative information. (ii) Because the
probability density function is a property both of the system and our knowledge
of the system, thermodynamic quantities, most particularly the entropy, are also
properties both of the system and our knowledge of the system. This second point
is closely related to the lack of a clear distinction between systems and models of
systems.

Objective programmes are much more technically difficult. Equilibrium calcula-
tions either rely on some kind of justification for the microcanonical distribution or
are the consequence of showing that equilibrium is achieved as the long-time limit
from non-equilibrium. The most developed programme for the latter is the work of
the Brussels-Austin School which needs the system to be chaotic.
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